
Fundamental Concepts of

Programming Languages
Implementation of PLs

Lecture 04

conf. dr. ing. Ciprian-Bogdan Chirila

University Politehnica Timisoara
Department of Computing and Information Technology

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 1 / 38



The implementation of PLs

1 The implementation of PLs

2 Interpretation

3 Translation

4 Comparisons

5 The compiling process

6 Compiler structure

7 Analysis and synthesis

8 Compiling the assignment instruction

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 2 / 38



The implementation of PLs

Implementation of PLs

All computers execute low level programs written in
machine language
In order to execute high level languages two
methods are used:

interpretation
translation

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 3 / 38



Interpretation

1 The implementation of PLs

2 Interpretation

3 Translation

4 Comparisons

5 The compiling process

6 Compiler structure

7 Analysis and synthesis

8 Compiling the assignment instruction

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 4 / 38



Interpretation

Interpretation

Means executing directly the high level instructions

Each high level instruction consists in a sequence of
machine instructions
Program execution is done by an interpreter

Reads the high level instructions
Decodes them
Executes the machine instructions sequence

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 5 / 38



Interpretation

Interpreter working cycle

Read next instruction

Decode instruction

Execute corresponding machine instructions

source

program
interpreter results

input data

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 6 / 38



Interpretation

Interpretation

follows the von Neumann normal cycle

is a simulation on a regular computer of a high level
language computer

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 7 / 38



Translation

1 The implementation of PLs

2 Interpretation

3 Translation

4 Comparisons

5 The compiling process

6 Compiler structure

7 Analysis and synthesis

8 Compiling the assignment instruction

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 8 / 38



Translation

Translation

Before execution the program is translated from
high level language in machine code

The process is highly complex

Done in several steps
Done by several specialized software

Preprocessors
Compilers
Assemblers
Link editors

The result is the object program, machine code to
be executed

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 9 / 38



Translation

Implementation by translation

source 

program

translator

(compiler)

results

input 

data

object 

program

Compiler - compilation

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 10 / 38



Translation

Translation with interpretation

Translation into object program
not machine code
but intermediary code (abstract machine)

Interpretation of the intermediary code

present in Java and C#

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 11 / 38



Translation

The Java approach

Source program compiles into bytecode

Bytecode instruction sequence for the Java virtual
machine (JVM)

Bytecode can be transferred to any machine having
an interpreter
Advantages

High Portability
Platform independence

Drawback
Increased interpretation time

Compromise solution
JIT compiler (just in time) - bytecode to machine code

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 12 / 38



Translation

The C# approach

Compilation result is a pseudocode called MicroSoft
intermediate language (MSIL)
MSIL

is a portable assembly language
Needs the Common Language Runtime (CLR) to be
converted in machine code
CLR activates a JIT compiler to convert MSIL code into
machine code as needed

fast

portable

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 13 / 38



Comparisons

1 The implementation of PLs

2 Interpretation

3 Translation

4 Comparisons

5 The compiling process

6 Compiler structure

7 Analysis and synthesis

8 Compiling the assignment instruction

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 14 / 38



Comparisons

Time comparison

Compiled programs are faster then interpreted
programs

Instruction interpreting implies instruction
translation
Object program

Compiled once
Run several times without translation

Interpretation time becomes critical when the
application is run several times

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 15 / 38



Comparisons

Space comparison

Interpreting takes less memory space

Compilation involves replacing each high level
instruction with the sequence of machine
instructions

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 16 / 38



The compiling process

1 The implementation of PLs

2 Interpretation

3 Translation

4 Comparisons

5 The compiling process

6 Compiler structure

7 Analysis and synthesis

8 Compiling the assignment instruction

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 17 / 38



The compiling process

The compiling process

Basic compiler functionalities
Source program analysis
Destination program synthesis

The compiler parts
Analysis part

breaks the program into basic components
Creates an intermediate representation

Synthesis part
Builds the destination program from the intermediate
representation

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 18 / 38



Compiler structure

1 The implementation of PLs

2 Interpretation

3 Translation

4 Comparisons

5 The compiling process

6 Compiler structure

7 Analysis and synthesis

8 Compiling the assignment instruction

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 19 / 38



Compiler structure

Compiler structure

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 20 / 38



Compiler structure

Table of symbols

Basic compiler tasks
to manage identifiers
to gather information about their attributes

Constants
Variables (domain, type)
Functions (number, type, order, transmission type for
parameters)

Is a data structure with a record for each identifier
Must allow fast search of identifiers
Adding a record in lexical or syntactical analysis
Auxiliary information are added during the analysis
process
Information is used

To check semantic actions
To generate the correct object code

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 21 / 38



Compiler structure

Error handling

Errors can be discovered in the first phase of the
compilation
Different reactions

To stop at first error, to correct it and to recompile from
the start
To handle the errors such as to continue compilation, to
detect also other errors and to correct them globally

Returning from error

Most errors are detected in syntactical and semantic
analysis phases

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 22 / 38



Analysis and synthesis

1 The implementation of PLs

2 Interpretation

3 Translation

4 Comparisons

5 The compiling process

6 Compiler structure

7 Analysis and synthesis

8 Compiling the assignment instruction

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 23 / 38



Analysis and synthesis

Analysis phases

Lexical or linear analysis

Syntactical or hierarchy analysis

Semantic or contextual analysis

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 24 / 38



Analysis and synthesis

Lexical or linear analysis

The program source
is a string of characters
is read from left to right
is grouped in lexical symbols sequences of characters
with specific semantic

Example a:=b+c*10
Identifiers: a, b, c
Operators: :=, +, *
Integers: 10

White spaces are ignored

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 25 / 38



Analysis and synthesis

Syntactical or hierarchy analysis

Symbols are grouped in greater collections
Expressions, declarations, instructions

Syntactic tree
Each node represents an operation
The sons represent the arguments

:=

a +

b *

c 10

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 26 / 38



Analysis and synthesis

Syntactical or hierarchy analysis

The hierarchical structure is expressed by recursive
rules

Recursive rules for defining
expressions
instructions

Splitting lexical and syntactical analysis is arbitrary
To simplify the overall task
Numbers, strings, identifiers, punctuation are lexical
symbols
Expressions, instructions, declarations are syntactical
constructions

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 27 / 38



Analysis and synthesis

Semantic or contextual analysis

Verifications that relate to the meaning of the
program

Source program contextual restrictions

Gathers type information for the code generation

Identifies operators, operand and instructions using
the hierarchical structure
Type checking verifies whether each operator has
the right operands

E.g. a real number can not be used to index a table

Domain analysis verifies that each identifier is used
in its own visibility domain

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 28 / 38



Analysis and synthesis

Synthesis phases

Intermediate code generation

Code optimization

Object code generation

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 29 / 38



Analysis and synthesis

Intermediate code generation

Intermediate representation of the source text is
done after lexical and syntactic analysis

Can be seen as a program for an abstract computer

There are several forms of intermediate
representations
3 address code

looks like an assembly language for a computer
Each memory location plays the role of a register

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 30 / 38



Analysis and synthesis

The 3 address code

Sequence of instructions

At most 3 operands

Each instruction has at most one operator together
with the assignment

The compiler needs to decide on the order of the
operators priority)
In order to keep computed values in each instruction
the compiler must generate temporary variables

With no relation with the source text

There can be instructions with less than 3 operands

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 31 / 38



Analysis and synthesis

Code optimization

The purpose is to optimize the intermediate code to
make fast machine code
To eliminate

Redundancies
Useless calculation, variables

Compilers with optimizations
The amount of time consumed for optimization is large

Simple optimizations
Good code efficiency
Do not slow down too much compilation

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 32 / 38



Analysis and synthesis

Object code generation

Is the final phase of the compiler
Generated object code can be

Locatable machine code
Virtual code

To translate intermediate code into machine code

To select and allocate memory cells for the program
variables

To choose and implement the best variable access
techniques using the hardware addressing facilities:
indexing, indirection etc

To allocate registers for computation and for
temporary storage of the intermediate results

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 33 / 38



Compiling the assignment instruction

1 The implementation of PLs

2 Interpretation

3 Translation

4 Comparisons

5 The compiling process

6 Compiler structure

7 Analysis and synthesis

8 Compiling the assignment instruction

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 34 / 38



Compiling the assignment instruction

Compiling an assignment instruction

a:=b+c*10
a, b, c - real type variables

a:=b+c*10

Lexical analyzer

id1:=id2+id3*10

TS

a

b

c

.......

.......

.......

.......

Syntactic analyzer

:=

id1 +

id2 *

id3 10

1

2

3

4

:=

id      1 +

id      2 *

id      3 num   10

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 35 / 38



Compiling the assignment instruction

Compiling an assignment instruction

Semantic analyzer

:=

id1 +

id2 *

id3

10

inttoreal

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 36 / 38



Compiling the assignment instruction

Compiling an assignment instruction

Intermediate

code generator

Code optimizer

Code generator

temp1=inttpreal(10)

temp2:=id3*temp1

temp3:=id2+temp2

id1:=temp3

temp1:=id3*10.0

id1:=id2+temp1

(id3)->R2

#10.0*(R2)->R2

(id2)->R1

(R2)+(R1)->R1

(R1)->id1

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 37 / 38



Compiling the assignment instruction

Bibliography

1 Brian Kernighan, Dennis Ritchie, C Programming
Language, second edition, Prentice Hall, 1978.

2 Carlo Ghezzi, Mehdi Jarayeri – Programming
Languages, John Wiley, 1987.

3 Horia Ciocarlie – Universul limbajelor de
programare, editia 2-a, editura Orizonturi
Universitare, Timisoara, 2013.

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages 38 / 38


	The implementation of PLs
	Interpretation
	Translation
	Comparisons
	The compiling process
	Compiler structure
	Analysis and synthesis
	Compiling the assignment instruction

