Fundamental Concepts of
Programming Languages

Implementation of PLs
Lecture 04

conf. dr. ing. Ciprian-Bogdan Chirila

University Politehnica Timisoara
Department of Computing and Information Technology

TYET S G EL WL EWQVANE Fundamental Concepts of Programming Lang 1/38



The implementation of PLs

@ The implementation of PLs

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 2/38



The implementation of PLs

Implementation of PLs

@ All computers execute low level programs written in
machine language

@ In order to execute high level languages two
methods are used:

@ interpretation
e translation

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 3/38



Interpretation

© Interpretation

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 4/38



Interpretation

@ Means executing directly the high level instructions

@ Each high level instruction consists in a sequence of
machine instructions
@ Program execution is done by an interpreter

@ Reads the high level instructions
e Decodes them
e Executes the machine instructions sequence

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 5/38



Interpretation

Interpreter working cycle

@ Read next instruction

@ Decode instruction

@ Execute corresponding machine instructions

source
program

— >

input data

—>

interpreter

—) results

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang

6/38



Interpretation

e follows the von Neumann normal cycle

@ is a simulation on a regular computer of a high level
language computer

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 7/38



Translation

© Translation

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 8/38



Translation

o Before execution the program is translated from
high level language in machine code

@ The process is highly complex

Done in several steps
Done by several specialized software
@ Preprocessors
e Compilers
e Assemblers
e Link editors

@ The result is the object program, machine code to
be executed

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 9/38



Translation

Implementation by translation

source
program

s

translator
(compiler)

s

input

data )

object
program

___) results

@ Compiler - compilation

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang

10/38



Translation with interpretation

@ Translation into object program

@ not machine code
e but intermediary code (abstract machine)

@ Interpretation of the intermediary code
@ present in Java and C#

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 11/38



The Java approach

@ Source program compiles into bytecode

@ Bytecode instruction sequence for the Java virtual
machine (JVM)

@ Bytecode can be transferred to any machine having
an interpreter
@ Advantages

e High Portability
e Platform independence

e Drawback
@ Increased interpretation time
e Compromise solution
e JIT compiler (just in time) - bytecode to machine code

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 12 /38



The C# approach

e Compilation result is a pseudocode called MicroSoft
intermediate language (MSIL)
e MSIL

@ is a portable assembly language

o Needs the Common Language Runtime (CLR) to be
converted in machine code

@ CLR activates a JIT compiler to convert MSIL code into
machine code as needed

o fast
@ portable

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 13/38



Comparisons

@ Comparisons

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 14 /38



Time comparison

@ Compiled programs are faster then interpreted
programs

@ Instruction interpreting implies instruction
translation
@ Object program
e Compiled once
e Run several times without translation
@ Interpretation time becomes critical when the
application is run several times

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 15 /38



Space comparison

@ Interpreting takes less memory space

e Compilation involves replacing each high level
instruction with the sequence of machine
instructions

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 16 /38



The compiling process

© The compiling process

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 17 /38



The compiling process

@ Basic compiler functionalities

e Source program analysis
@ Destination program synthesis

@ The compiler parts
e Analysis part

@ breaks the program into basic components
@ Creates an intermediate representation

e Synthesis part

@ Builds the destination program from the intermediate
representation

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 18 /38



Compiler structure

© Compiler structure

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 19/38



Compiler structure

Source program

Lexical analyzer

Syntactical analyzer

Semantic analyzer

Intermediate code
generator

Table of symbols Error handling

Code optimizer

Object code
generator

Destination program

onf. dr. ing. Ciprian-Bogdan Chirila (WEliFundamental Concepts of Programming Lang

20/38



Table of symbols

@ Basic compiler tasks

@ to manage identifiers
@ to gather information about their attributes
@ Constants
@ Variables (domain, type)
@ Functions (number, type, order, transmission type for
parameters)

@ |s a data structure with a record for each identifier
@ Must allow fast search of identifiers

@ Adding a record in lexical or syntactical analysis

@ Auxiliary information are added during the analysis

process
@ Information is used
@ To check semantic actions

e To generate the correct object code
foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 21/38




Error handling

@ Errors can be discovered in the first phase of the
compilation
e Different reactions

e To stop at first error, to correct it and to recompile from

the start
e To handle the errors such as to continue compilation, to
detect also other errors and to correct them globally

@ Returning from error

@ Most errors are detected in syntactical and semantic
analysis phases

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 22/38



Analysis and synthesis

@ Analysis and synthesis

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 23/38



Analysis phases

@ Lexical or linear analysis
@ Syntactical or hierarchy analysis
@ Semantic or contextual analysis

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang

24 /38



Lexical or linear analysis

@ The program source

@ is a string of characters
@ is read from left to right
@ is grouped in lexical symbols sequences of characters
with specific semantic
e Example a:=b+c*10
o lIdentifiers: a, b, ¢
e Operators: :=, +, *
e Integers: 10

@ White spaces are ignored

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 25/38



Syntactical or hierarchy analysis

@ Symbols are grouped in greater collections
e Expressions, declarations, instructions

@ Syntactic tree
e Each node represents an operation
@ The sons represent the arguments

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 26 /38



Syntactical or hierarchy analysis

@ The hierarchical structure is expressed by recursive
rules
@ Recursive rules for defining
@ expressions
@ instructions
@ Splitting lexical and syntactical analysis is arbitrary
e To simplify the overall task
e Numbers, strings, identifiers, punctuation are lexical
symbols

e Expressions, instructions, declarations are syntactical
constructions

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 27/38



Semantic or contextual analysis

@ Verifications that relate to the meaning of the
program

@ Source program contextual restrictions
@ Gathers type information for the code generation

@ ldentifies operators, operand and instructions using
the hierarchical structure

@ Type checking verifies whether each operator has
the right operands

e E.g. a real number can not be used to index a table
@ Domain analysis verifies that each identifier is used
in its own visibility domain

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 28/38



Synthesis phases

@ Intermediate code generation
@ Code optimization
@ Object code generation

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang

29/38



Intermediate code generation

@ Intermediate representation of the source text is
done after lexical and syntactic analysis

Can be seen as a program for an abstract computer

@ There are several forms of intermediate
representations
@ 3 address code

@ looks like an assembly language for a computer
e Each memory location plays the role of a register

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 30/38



The 3 address code

@ Sequence of instructions
@ At most 3 operands

@ Each instruction has at most one operator together
with the assignment

@ The compiler needs to decide on the order of the
operators priority)

@ In order to keep computed values in each instruction
the compiler must generate temporary variables

e With no relation with the source text

@ There can be instructions with less than 3 operands

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 31/38



Code optimization

@ The purpose is to optimize the intermediate code to
make fast machine code
@ To eliminate

@ Redundancies
@ Useless calculation, variables

e Compilers with optimizations

e The amount of time consumed for optimization is large
@ Simple optimizations

e Good code efficiency

e Do not slow down too much compilation

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 32/38



Object code generation

@ Is the final phase of the compiler
Generated object code can be

@ Locatable machine code
o Virtual code

@ To translate intermediate code into machine code

@ To select and allocate memory cells for the program
variables

@ To choose and implement the best variable access
techniques using the hardware addressing facilities:
indexing, indirection etc

@ To allocate registers for computation and for
temporary storage of the intermediate results

A e e R T I Fundamental Concepts of Programming Lang 33/38



Compiling the assignment instruction

© Compiling the assignment instruction

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 34 /38



Compiling an assignment instruction

a:=b-+c*10
a, b, c - real type variables

a=b+c*10 T8
1 a
Lexical analyzer 2 b
3| e
id1:=id2+id3"10 4

Syntactic analyzer

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 35/38



Compiling an assignment instruction

¥

Semantic analyzer

id1 +
id2 *
id3 inttoreal

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 36/38



Compiling the assignment instru

Compiling an assignment instruction

¥

Intermediate
code generator

id1:=temp3

4

Code optimizer |

v

temp1:=id3+10.0
id1:=id2+temp1

$

| Code generator

-

(id3)-=R2
#10.0*(R2)->R2
(id2)-=R1
(R2)+(R1)->R1
(R1)-=id1

onf. dr. ing. Ciprian-Bogdan Chirila

VS Fundamental Concepts of Programming Lang

37/38



Bibliography

@ Brian Kernighan, Dennis Ritchie, C Programming
Language, second edition, Prentice Hall, 1978.

@ Carlo Ghezzi, Mehdi Jarayeri — Programming
Languages, John Wiley, 1987.

@ Horia Ciocarlie — Universul limbajelor de
programare, editia 2-a, editura Orizonturi
Universitare, Timisoara, 2013.

foTo} M [T - T TG E Ty B 1oL E M G P VATV Fundamental Concepts of Programming Lang 38/38



	The implementation of PLs
	Interpretation
	Translation
	Comparisons
	The compiling process
	Compiler structure
	Analysis and synthesis
	Compiling the assignment instruction

